
Stephen Checkoway

Programming Abstractions
Lecture 13: Exam 1 Review



Announcements

Office hours: Tuesday 13:30–14:30


Exam 1 on Wednesday



Exam Format

Take home exam


4 implementation problems ("Write a procedure to do x")


1 extra credit problem


Write all of your solutions in DrRacket


Turn in your completed exam via Blackboard


Exam will be released at midnight on Tuesday


Your solutions are due by 23:59 on Tuesday



Class time

During Wednesday's class, I will be in my office, feel free to stop by to ask 

about the exam



Possible question topics

Basic Scheme/Racket functions and special forms


‣ cons, first (car), rest (cdr), list, append, member, empty?, filter, etc.


‣ define, lambda, if, cond, let, letrec, and, or, etc.


map and apply


foldl and foldr and how they differ


Recursion


‣ Tail recursion


‣ "Accumulator passing style"


Closures: how to create and use them



Given a list lst and an element x, how can we create a new list that 

consists of x prepended to lst? E.g., if lst is '(1 2 3) and x is 4, we 

want '(4 1 2 3)

A. (prepend x lst)

B. (cons x lst)

C. (append x lst)

D. It's not possible to modify lst

E. None of the above

6



Given a list lst and an element x, how can we create a new list that 

consists of x appended to lst? E.g., if lst is '(1 2 3) and x is 4, we 

want '(1 2 3 4)

A. (cons lst x)

B. (append lst x)


C. (append lst '(x))


D. (append lst (list x))


E. None of the above

7



Given a list of lists, lsts, how do you get a list containing the second element 

of each list, in order?

A. (map second lsts)

B. (map rest lsts)

C. (apply second lsts)

D. (apply rest lsts)


E. None of the above

8



Drop

Write a procedure (drop lst n) that takes a list and an integer and returns a list 

consisting of the elements of lst except for the first n elements


(drop '(1 2 3) 0) => '(1 2 3)

(drop '(1 2 3) 2) => '(3)

(drop '(1 2 3) 4) => (error 'drop "list too short")



Select

Represent a student as a three-element list (name, year, gpa), e.g., 

'("Jane" 2 3.5) represents Jane who is a second-year and has a 3.5 GPA

Write a procedure (select lst) that takes a list of students and returns the 

name of all second or third year students with a GPA that's at least 3.0



Enumerate

Write a recursive procedure (enumerate lst) that takes a list and returns a 

list of 2-element lists (index elem) where elem is in lst and index is its 

index, in order.


E.g., (enumerate '(a b c)) returns '((0 a) (1 b) (2 c))



Tail-recursive enumerate

Write a tail-recursive procedure (enumerate2 lst) that takes a list and 

returns a list of 2-element lists (index elem) where elem is in lst and 

index is its index, in order.


E.g., (enumerate2 '(a b c)) returns '((0 a) (1 b) (2 c))



Flip

Write a procedure (flip f) that that takes a 2-argument procedure f and 

returns a 2-argument closure that, when called, calls f with its arguments in the 

opposite order. I.e., ((flip f) x y) is the same as (f y x)

Write (flip* f) that takes any procedure f and returns a closure that, when 

called, calls f with all of its arguments reversed. E.g.,

‣ ((flip* f)) is (f);

‣ ((flip* g) x) is (g x);

‣ ((flip* h) x y) is (h y x);

‣ ((flip* i) x y z) is (i z y x); and so forth



Reverse a structured (non-flat) list

Write a procedure (reverse-all lst) that takes a non-flat list and reverse it, 

including all contained lists


E.g., (reverse-all '(1 () (2 3 (4 5)) 6)) returns  

'(6 ((5 4) 3 2) () 1)



Create a new data type

Turn our informal (name year gpa) data type into a proper one:


Constructor


‣ (student name year gpa) => (list 'student name year gpa)


Recognizer


‣ (student? x) => #t or #f (no crashing permitted!)


Accessors with proper errors


‣ (student-name s) => name or error if s is not a student

‣ (student-year s) => year or error if s is not a student

‣ (student-gpa s) => gpa or error if s is not a student


Rewrite (select lst) to return the list of names of students with gpa >= 3.0


